1	$v^2 = 2 \times 9.8 \times 10$	M1	Using $v^2 = u^2 + 2as$ with $u = 0$
	$v = 14 \mathrm{ms^{-1}}$	A 1	
	speed = $\sqrt{(7^2 + 14^2)}$ 15.7 or $7\sqrt{5}$ ms ⁻¹	M1	Method to find speed using their "v"
		A1	
	tan ⁻¹ (14/7) or tan ⁻¹ (7/14)	M1	Method to find angle using their "v"
	63.4° to the horizontal	A1 6	26.6° to vertical
			6

2	(i)	$(6\sin\Pi/2) \div (\Pi/2)$	M1	Use of correct formula
		3.82	A1 2	AG
	(ii)	8d = 3(6-3.82) + 5x9.82	M1	Method to find centre of mass
		or $8x = \pm \{3(-3.82) + 5x3.82\}$	A1	
		d = 6.95 or 6.96 or x = +/-0.955	A1	
		$tan\theta = 0.96/6$	M1	Attempt to find the required angle
		$\theta = 9^{\circ}$	A1 5	
				7

3 (i)	$D = 128\ 000/80\ (= 1600)$ $k(80)^2 = 128\ 000/80$ $k = \frac{1}{4}$	B1 M1 A1 A1	Driving force = resistance
	R = 900 N FT	B1 5	FT on their k ($R = 3600k$)
(ii)	D = 128 000 / 60 (= 2133½) 2000 x 9.8 x sin2° 6400/3-900-2000 x 9.8 x sin2° = 2000a a = 0.275 m s ⁻²	B1 B1 M1 A1 4	4 terms required 9

4	(i)	$4T\cos 20^{\circ} = 5 \text{ x g x } 2.5$ T = 32.6 N	M1 A1 A1	Using moments; allow sin/cos mix Allow with omission of g
	(ii)	$X = T\sin 20^{\circ}$ $X = 11.1$ $Y + T\cos 20^{\circ} = 5 \text{ x g}$ Figure 1.1	M1 A1 M1	allow sin/cos mix FT their T
		or $2.5Y = 1.5 \times T\cos 20$ or $4Y = 1.5 \times 5g$ $Y = 18.4$ Find $R = \sqrt{(X^2 + Y^2)}$ or $\tan^{-1}(Y/X)$	5	FT their T, but not from omission of g
		or $\tan^{-1}(X/Y)$ R = 21.5 N $\theta = 58.8^{\circ}$ above the horizontal	A1 A1	$X \neq 0, Y \neq 0$ or 31.2° to left of vertical

5	(i)	$T\cos 45^{\circ} + R\sin 45^{\circ} = mg$	*M1	3 terms
		2	A1	2
		$T\sin 45^{\circ} - R\cos 45^{\circ} = m \sin 45^{\circ} \omega^{2}$	*M1 A1	3 terms; $a = r \omega^2$
		$2T = \sqrt{2mg + ml\omega^2}$	Dep*M1	Method to eliminate R
		$T = m/2(\sqrt{2}g + l\omega^2)$	A1 6	AG www
	(ii)	R = 0	B1	may be implied
		$2R = \sqrt{2mg} - ml\omega^2$	B1	-
		or $T\cos 45^\circ = mg$ or $T = ml\omega^2$		
		or $I = mI\omega$ Solve to find ω	M1	
			1,11	
		$\omega = 4.16 \text{ rad s}^{-1}$	A1 4	10

6	(i)	2mu = 2mv + 3mv	M1	Conservation of momentum
		v=2/5 u	A1 A1 3	Must be $v =$
	(ii)	e = (3v - v) / u e = 4/5	M1 A1 2	Using restitution AG
	(iii)	Initial K.E. = $9mv^2 / 2 = 18mu^2 / 25$ Final K.E. = $9mv^2 / 8 = 9mu^2 / 50$ $\frac{1}{2}m(V)^2$ = Final K.E. V = 3u / 5	B1 FT B1 FT M1 A1 4	FT on their v from (i) FT on their v from (i) AG
	(iv)	$4mu / 5 - 3mu / 5 = 2mx + my$ $u / 5 = 2x + y$ $e = 4/5 = (y - x) / u$ $4u = 5y - 5x$ solving 2 relevant equations $x = -u/5 \ y = 3u/5$ $y = 3u/5$ away from wall (x) + towards wall (y)	M1 A1 FT M1 FT A1 M1 A1 A1 A1	Conservation of momentum FT on their v from (i); aef Using restitution FT on their v from (i); aef both 17

4/29	Mark Scr	ieme	June 2010
7 (i)	R = 0.2 x 9.8 x cos30° (= 1.70) F = 0.1 x 9.8 x cos30° (= 0.849) FT $\frac{1}{2}$ x 0.2 x 11 ² - $\frac{1}{2}$ x 0.2 v ² = 0.2 x 9.8 x 5sin30 + 5 x 0.849 v = 5.44 m s ⁻¹	B1 B1 M1 A1 A1 A1 6	FT on their R, but not R =0.2g Use of conservation of energy AG
Or last 4 marks of (i)	$F + 0.2gsin30 = \pm 0.2a$ $a = \pm 9.1$ $v^{2} = 11^{2} + 2 x a x 5$ $v = 5.44 \text{ m s}^{-1}$	M1 A1 M1 A1	Use of N2L, 3 terms Complete method to find v
(ii)	t = $5\cos 30^{\circ}/5.44\cos 30^{\circ}$ t = 0.919 s u = $5.44\sin 30^{\circ}$ (= 2.72) s = $2.72 \times 0.919 - 4.9 \times 0.919^{2}$ s = -1.6 (or better) Ht drop to $C = 5\sin 30^{\circ} = 2.5 \text{ m}$ Ball does not hit the roof	M1 A1 B1 M1 A1 B1 A1 7	time to lateral position over <i>C</i> Ht dropped
Or first 5 marks of (ii)	$y = x tan\theta - g x^{2} sec^{2} \theta/2V^{2}$ substitute values $V = 5.44 \theta = 30^{\circ} x = 5 cos 30^{\circ}$ $y = 2.5 - 9.8 x 25 x 3/4 x 4/3 / (2x5.44^{2})$ $y = -1.6 \text{ (or better)}$	B1 M1 A1 A1	all 3 correct
OR (ii)	$u = 5.44\sin 30^{\circ} (= 2.72)$ $-2.5 = 5.44\sin 30t - 4.9t^{2}$ $t = 1.04$ $x = 5.44\cos 30 \times 1.04 = 4.9 \text{ (or better)}$ Horizontal distance from B to C = $5\cos 30 = 4.3 \text{ (or better)}$ Ball does not hit the roof	B1 M1 A1 A1 A1 A1	aef time to position level with AC
OR (ii)	y = xtan θ – gx ² sec ² θ /2V ² substitute values -2.5 = 0.577x – 0.221x ² Attempt to solve quadratic for x x = 4.9 (or better) Horizontal distance from B to C = 5cos30 = 4.3 (or better) Ball does not hit the roof	B1 M1 A1 M1 A1 B1 A1 7	aef
OR (ii)	u = 5.44sin30° = 2.72 -2.5 = 5.44sin30t - 4.9t ² t = 1.0 (or better) T = 5cos30°/5.44cos30° T = 0.92 (or better) Ball does not hit the roof	B1 M1 A1 A1 M1 A1 A1	aef time to position level with AC time to lateral position over C

•				
OR (ii)	Attempt at equation of trajectory	M1		
	$y = 0.577x - 0.221x^2$	A1		
	y = -0.577x	B1		Equation of BC
	Solving their quadratic and linear			
	equations to get at least x or y	M1		
	x = 5.2 (or better) or $y = -3.0$ (or better)	A1		
	Horizontal distance from B to C =			Must be the one needed for
	$5\cos 30 = 4.3$ (or better)			comparison
	Or Ht drop to $C = 5\sin 30^\circ = 2.5$	B1		
	Ball does not hit the roof	A 1	7	
OR (ii)	Attempt at equation of trajectory	M1		
	$y = 0.577x - 0.221x^2$	A1		
	y = -0.577x	B1		
	Solving their quadratic and linear			
	equations	M1		
	x = 5.2 (or better) and $y = -3.0$ (or	A1		
	better)			
	Distance = 6.0 (or better)	B1		Distance from B to point of
				intersection
	Ball does not hit the roof	A 1	7	