$\mathbf{1}$	$v^{2}=2 \times 9.8 \times 10$	M1	Using $v^{2}=u^{2}+2$ as with $u=0$
	$v=14 \mathrm{~ms} \mathrm{~s}^{-1}$	A1	
	speed $=\sqrt{ }\left(7^{2}+14^{2}\right)$	M1	Method to find speed using their " v "
	15.7 or $7 \sqrt{ } 5 \mathrm{~ms} \mathrm{~s}^{-1}$	A1	
	$\tan ^{-1}(14 / 7)$ or $\tan ^{-1}(7 / 14)$	M1	Method to find angle using their " v "
	$63.4^{\circ} \quad$ to the horizontal	A1 6	26.6° to vertical
			$\mathbf{6}$

2 (i)	$\begin{aligned} & (6 \sin \Pi / 2) \div(\Pi / 2) \\ & 3.82 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Use of correct formula AG
(ii)	$\begin{aligned} & 8 \mathrm{~d}=3(6-3.82)+5 \mathrm{x} 9.82 \\ & \text { or } 8 \mathrm{x}= \pm\{3(-3.82)+5 \mathrm{x} 3.82\} \\ & \mathrm{d}=6.95 \text { or } 6.96 \text { or } \mathrm{x}=+/-0.955 \\ & \tan \theta=0.96 / 6 \\ & \theta=9^{\circ} \end{aligned}$	M1 A1 A1 M1 A1 5	Method to find centre of mass Attempt to find the required angle 7

3 (i)	$\begin{aligned} & \mathrm{D}=128000 / 80(=1600) \\ & \mathrm{k}(80)^{2}=128000 / 80 \end{aligned}$ $\begin{aligned} & k=1 / 4 \\ & R=900 \mathrm{~N} \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { B1 } & 5 \end{array}$	Driving force = resistance FT on their $k(\mathrm{R}=3600 \mathrm{k})$
(ii)	$\begin{aligned} & \mathrm{D}=128000 / 60(=21331 / 3) \\ & 2000 \times 9.8 \times \sin 2^{\circ} \\ & 6400 / 3-900-2000 \times 9.8 \times \sin 2^{\circ}=2000 a \\ & a=0.275 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	B1 B1 M1 A1 4	4 terms required 9

4 (i)	$\begin{aligned} & 4 \mathrm{~T} \cos 20^{\circ}=5 \times \mathrm{g} \times 2.5 \\ & \mathrm{~T}=32.6 \mathrm{~N} \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & \\ \text { A1 } & \end{array}$	Using moments; allow sin/cos mix Allow with omission of g
(ii)	$\begin{aligned} & \mathrm{X}=\operatorname{Tsin} 20^{\circ} \\ & \mathrm{X}=11.1 \\ & \mathrm{Y}+\mathrm{T} \cos 20^{\circ}=5 \times \mathrm{g} \\ & \text { or } 2.5 \mathrm{Y}=1.5 \times \text { Tcos } 20 \text { or } 4 \mathrm{Y}=1.5 \times 5 \mathrm{~g} \\ & \mathrm{Y}=18.4 \\ & \mathrm{R}=\sqrt{ }\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right) \text { or } \tan ^{-1}(\mathrm{Y} / \mathrm{X}) \\ & \text { or } \tan ^{-1}(\mathrm{X} / \mathrm{Y}) \\ & \mathrm{R}=21.5 \mathrm{~N} \\ & \theta=58.8^{\circ} \text { above the horizontal } \end{aligned}$	M1 A1 M1 A1 M1 A1 A1 7	allow $\sin /$ cos mix FT their T FT their T, but not from omission of g $X \neq 0, Y \neq 0$ or 31.2° to left of vertical 10

5 (i)	$\begin{aligned} & \mathrm{T} \cos 45^{\circ}+\mathrm{R} \sin 45^{\circ}=\mathrm{mg} \\ & \mathrm{~T} \sin 45^{\circ}-\mathrm{R} \cos 45^{\circ}=\mathrm{ml} \sin 45^{\circ} \omega^{2} \\ & 2 \mathrm{~T}=\sqrt{ } 2 \mathrm{mg}+\mathrm{ml} \omega^{2} \\ & \mathrm{~T}=\mathrm{m} / 2\left(\sqrt{ } 2 \mathrm{~g}+1 \omega^{2}\right) \end{aligned}$	*M1 A1 *M1 A1 Dep*M1 A1 6	3 terms 3 terms; $\mathrm{a}=\mathrm{r} \omega^{2}$ Method to eliminate R AG www
(ii)	$\begin{aligned} & \mathrm{R}=0 \\ & 2 \mathrm{R}=\sqrt{ } 2 \mathrm{mg}-\mathrm{ml} \omega^{2} \\ & \text { or } \mathrm{T} \cos 45^{\circ}=\mathrm{mg} \\ & \text { or } \mathrm{T}=\mathrm{ml} \omega^{2} \\ & \text { Solve to find } \omega \\ & \\ & \omega=4.16 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 B1 M1 A1 4	may be implied

6 (i)	$\begin{aligned} & 2 m u=2 m v+3 m v \\ & v=2 / 5 u \end{aligned}$	M1 A1 A1 3	Conservation of momentum Must be $v=$
(ii)	$\begin{aligned} & \mathrm{e}=(3 v-v) / u \\ & \mathrm{e}=4 / 5 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	Using restitution AG
(iii)	$\begin{aligned} & \text { Initial K.E. }=9 m v^{2} / 2=18 m u^{2} / 25 \\ & \text { Final K.E. }=9 m v^{2} / 8=9 m u^{2} / 50 \\ & 1 / 2 m(V)^{2}=\text { Final K.E. } \\ & V=3 u / 5 \end{aligned}$	$\begin{aligned} & \text { B1 FT } \\ & \text { B1 FT } \\ & \text { M1 } \\ & \text { A1 } 4 \end{aligned}$	FT on their v from (i) FT on their v from (i) AG
(iv)	$4 m u / 5-3 m u / 5=2 m x+m y$ $u / 5=2 x+y$ $\mathrm{e}=4 / 5=(y-x) / u$ $4 u=5 y-5 x$ solving 2 relevant equations $\begin{aligned} & x=-u / 5 y=3 u / 5 \\ & y=3 u / 5 \end{aligned}$ away from wall $(x)+$ towards wall (y)	M1 A1 FT M1 FT A1 M1 A1 A1 A1 8	Conservation of momentum FT on their v from (i); aef Using restitution FT on their v from (i); aef

7 (i) Or last 4 marks of (i)	$\begin{aligned} & \mathrm{R}=0.2 \times 9.8 \times \cos 30^{\circ}(=1.70) \\ & \mathrm{F}=0.1 \times 9.8 \times \cos 30^{\circ}(=0.849) \\ & \\ & 1 / 2 \times 0.2 \times 11^{2}-1 / 2 \times 0.2 \mathrm{v}^{2}= \\ & 0.2 \times 9.8 \times 5 \sin 30+5 \times 0.849 \\ & \mathrm{v}=5.44 \mathrm{~m} \mathrm{~s}^{-1} \\ & \\ & \mathrm{~F}+0.2 \mathrm{~g} \sin 30= \pm 0.2 \mathrm{a} \\ & \mathrm{a}= \pm 9.1 \\ & \mathrm{v}^{2}=11^{2}+2 \times \mathrm{a} \times 5 \\ & \mathrm{v}=5.44 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	B1 B1 M1 A1 A1 A1 6 M1 A1 M1 A1	FT on their R, but not $\mathrm{R}=0.2 \mathrm{~g}$ Use of conservation of energy AG Use of N2L, 3 terms Complete method to find v
(ii) Or first 5 marks of (ii)	$\begin{aligned} & \mathrm{t}=5 \cos 30^{\circ} / 5.44 \cos 30^{\circ} \\ & \mathrm{t}=0.919 \mathrm{~s} \\ & \mathrm{u}=5.44 \sin 30^{\circ}(=2.72) \\ & \mathrm{s}=2.72 \times 0.919-4.9 \times 0.919^{2} \\ & \mathrm{~s}=-1.6 \text { (or better) } \end{aligned}$ Ht drop to $C=5 \sin 30^{\circ}=2.5 \mathrm{~m}$ Ball does not hit the roof $y=x \tan \theta-g x^{2} \sec ^{2} \theta / 2 V^{2}$ substitute values $\begin{aligned} & V=5.44 \quad \theta=30^{\circ} \quad \mathrm{x}=5 \cos 30^{\circ} \\ & \mathrm{y}=2.5-9.8 \times 25 \times 3 / 4 \times 4 / 3 /\left(2 \times 5.44^{2}\right) \\ & \mathrm{y}=-1.6 \text { (or better) } \end{aligned}$	M1 A1 B1 M1 A1 B1 A1 7 B1 M1 A1 A1 A1	time to lateral position over C Ht dropped all 3 correct
OR (ii)	$\begin{aligned} & u=5.44 \sin 30^{\circ}(=2.72) \\ & -2.5=5.44 \sin 30 t-4.9 t^{2} \\ & t=1.04 \\ & x=5.44 \cos 30 \times 1.04=4.9 \text { (or better) } \end{aligned}$ Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Ball does not hit the roof	B1 M1 A1 A1 A1 B1 A1	aef time to position level with $A C$
OR (ii)	$\mathrm{y}=\mathrm{x} \tan \theta-\mathrm{gx}^{2} \sec ^{2} \theta / 2 \mathrm{~V}^{2}$ substitute values $-2.5=0.577 x-0.221 x^{2}$ Attempt to solve quadratic for x $x=4.9$ (or better) Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Ball does not hit the roof	B1 M1 A1 M1 A1 B1 A1 7	aef
OR (ii)	$\begin{aligned} & \mathrm{u}=5.44 \sin 30^{\circ}=2.72 \\ & -2.5=5.44 \sin 30 \mathrm{t}-4.9 \mathrm{t}^{2} \\ & \mathrm{t}=1.0 \text { (or better) } \\ & \mathrm{T}=5 \cos 30^{\circ} / 5.44 \cos 30^{\circ} \\ & \mathrm{T}=0.92 \text { (or better) } \\ & \text { Ball does not hit the roof } \end{aligned}$	B1 M1 A1 A1 M1 A1 A1 7	aef time to position level with $A C$ time to lateral position over C

OR (ii)	Attempt at equation of trajectory $\begin{aligned} & y=0.577 x-0.221 x^{2} \\ & y=-0.577 x \end{aligned}$ Solving their quadratic and linear equations to get at least x or y $\mathrm{x}=5.2$ (or better) or $\mathrm{y}=-3.0$ (or better) Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Or Ht drop to $C=5 \sin 30^{\circ}=2.5$ Ball does not hit the roof	M1 A1 B1 M1 A1 B1 A1 7	Equation of BC Must be the one needed for comparison
OR (ii)	Attempt at equation of trajectory $\begin{aligned} & y=0.577 x-0.221 x^{2} \\ & y=-0.577 x \end{aligned}$ Solving their quadratic and linear equations $\mathrm{x}=5.2$ (or better) and $\mathrm{y}=-3.0$ (or better) Distance $=6.0$ (or better) Ball does not hit the roof	M1 A1 B1 M1 A1 B1 A1 7	Distance from B to point of intersection

